Let the initial speed be \( u = 30 \, \text{m s}^{-1} \), and the angle of projection be \( \theta \).
The height of the ceiling is \( H_{ceiling} = 30 \, \text{m} \).
The ball just moves very near to the ceiling, so the maximum height of the projectile is \( H_{max} = 30 \, \text{m} \).
The formula for maximum height is \( H_{max} = \frac{u^2 \sin^2\theta}{2g} \).
Given \( g = 10 \, \text{m s}^{-2} \).
\[ 30 = \frac{(30)^2 \sin^2\theta}{2 \times 10} \]
\[ 30 = \frac{900 \sin^2\theta}{20} \]
\[ 30 = 45 \sin^2\theta \]
\[ \sin^2\theta = \frac{30}{45} = \frac{2}{3} \]
\[ \sin\theta = \sqrt{\frac{2}{3}} \] (since \( \theta \) is acute for projectile motion to reach maximum height).
Then \( \cos^2\theta = 1 - \sin^2\theta = 1 - \frac{2}{3} = \frac{1}{3} \).
So, \( \cos\theta = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \).
The length of the auditorium is the horizontal range \( R \) of the projectile.
The formula for range is \( R = \frac{u^2 \sin(2\theta)}{g} \).
\( \sin(2\theta) = 2\sin\theta\cos\theta = 2 \left(\sqrt{\frac{2}{3}}\right) \left(\frac{1}{\sqrt{3}}\right) = \frac{2\sqrt{2}}{3} \).
\[ R = \frac{(30)^2 \cdot \frac{2\sqrt{2}}{3}}{10} = \frac{900 \cdot \frac{2\sqrt{2}}{3}}{10} = \frac{300 \cdot 2\sqrt{2}}{10} = 30 \cdot 2\sqrt{2} = 60\sqrt{2} \, \text{m} \]
The length of the auditorium is \( 60\sqrt{2} \, \text{m} \).
This matches option (1).