The capacitance of an isolated sphere of radius \( r_1 \) is increased by 5 times when enclosed by an earthed concentric sphere of radius \( r_2 \). The ratio \( \frac{r_1}{r_2} \) is:
Show Hint
For concentric spherical capacitors, the capacitance increases when the outer sphere is grounded. Use \( C_2 = \frac{4 \pi \varepsilon_0 r_1 r_2}{r_2 - r_1} \) to find the ratio.
Step 1: Apply Capacitance Formula for Concentric Spheres
The capacitance of an isolated sphere is:
\[
C_1 = 4 \pi \varepsilon_0 r_1
\]
When enclosed by a conducting sphere at radius \( r_2 \), the new capacitance is:
\[
C_2 = \frac{4 \pi \varepsilon_0 r_1 r_2}{r_2 - r_1}
\]
Given that \( C_2 = 5C_1 \), we get:
\[
\frac{r_1 r_2}{r_2 - r_1} = 5 r_1
\]
Step 2: Solve for \( \frac{r_1}{r_2} \)
\[
\frac{r_1}{r_2} = \frac{4}{5}
\]
Thus, the correct answer is \( \frac{4}{5} \).