Step 1: Applying the Adiabatic Relation
For an adiabatic process, the relation between temperature and volume is given by:
\[
T_1 V_1^{\gamma -1} = T_2 V_2^{\gamma -1}
\]
where:
- \( \gamma \) is the polytropic index, given as \( \gamma = \frac{3}{2} \)
- \( T_1 \) is the initial temperature
- \( V_1 \) is the initial volume
- \( T_2 \) is the final temperature
- \( V_2 \) is the final volume, given as \( V_2 = \frac{V_1}{4} \)
Step 2: Substituting Values
Rewriting the equation:
\[
T \cdot V_1^{\frac{3}{2} - 1} = T_2 \cdot V_2^{\frac{3}{2} - 1}
\]
Since \( \gamma -1 = \frac{1}{2} \), we get:
\[
T \cdot V_1^{\frac{1}{2}} = T_2 \cdot \left(\frac{V_1}{4}\right)^{\frac{1}{2}}
\]
\[
T \cdot V_1^{\frac{1}{2}} = T_2 \cdot V_1^{\frac{1}{2}} \times \frac{1}{2}
\]
Canceling \( V_1^{\frac{1}{2}} \) from both sides:
\[
T = T_2 \times \frac{1}{2}
\]
Step 3: Solving for \( T_2 \)
\[
T_2 = 2T
\]
Thus, the correct answer is option (3).