The correct answer is: \(∫\frac{xe^x}{(1+x)^2}dx=\frac{e^x}{1+x}+C\) Let \(I=∫\frac{xe^x}{(1+x)^2} dx=∫e^x{\frac{x}{(1+x)^2}}dx\) \(=∫e^x=[\frac{1+x-1}{(1+x)^2}]dx\) \(=∫e^x=[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx\) Let \(ƒ(x)=\frac{1}{1+x}\,\, ƒ'(x)=\frac{-1}{(1+x)^2}\) \(⇒∫\frac{xe^x}{(1+x)^2}dx=∫e^x[{ƒ(x)+ƒ'(x)}]dx\) It is known that,\(∫e^x[ƒ(x)+ƒ'(x)]dx=e^xƒ(x)+C\) \(∴∫\frac{xe^x}{(1+x)^2}dx=\frac{e^x}{1+x}+C\)
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.