\(Let \space \frac{x^{2+}x+1}{(x+1)^{2}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}...(1)\)
\(⇒x^{2}+x+1=A(x+1)(x+2)+B(x+2)+C(x^{2}+2x+1)\)
\(⇒x^{2}+x+1=A(x^{2}+3x+2)+B(x+2)+C(x^{2}+2x+1)\)
\(⇒x^{2}+x+1=(A+C)x^{2}+(3A+B+2C)x+(2A+2B+C)\)
Equating the coefficients of \(x2,x,\) and constant term,we obtain
\(A+C=1\)
\(3A+B+2C=1\)
\(2A+2B+C=1\)
On solving these equations,we obtain
\(A=-2,B=1,and C=3\)
From equation(1),we obtain
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{-2}{(x+1)}+\frac{3}{(x+2)}+\frac{1}{(x+1)^{2}}\)
\(\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}dx=-2\int\frac{1}{x+1}dx+3\int\frac{1}{(x+2)}dx+\int\frac{1}{(x+1)^{2}}dx\)
\(=-2log|x+1|+3log|x+2|-\frac{1}{(x+1)}+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]