\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\) = \(1- \frac {(4x^2+10)}{(x^2+3)(x^2+4)}\)
Let \(\frac {(4x^2+10)}{(x^2+3)(x^2+4)}\) = \(\frac {Ax+B}{(x^2+3)}+\frac {Cx+D}{(x^2+4)}\)
\(4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)\)
\(4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D\)
\(4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(4B+3D)\)
\(Equating\ the\ coefficients\ of\ x^3, x^2, x,\ and\ constant \ term,\ we\ obtain\)
\(A + C = 0\)
\(B + D = 4\)
\(4A + 3C = 0\)
\(4B + 3D = 10\)
\(On\ solving\ these \ equations,\ we \ obtain\)
\(A = 0, B = −2, C = 0, \ and\ D = 6\)
∴ \(\frac {(4x^2+10)}{(x^2+3)(x^2+4)}\) =\(-\frac {2}{(x^2+3)}+\frac {6}{(x^2+4)}\)
\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\) = 1\(-\frac {2}{(x^2+3)}+\frac {6}{(x^2+4)}\)
⇒ \(∫\)\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\ dx\) = \(∫[{1+\frac {2}{(x^2+3)}-\frac {6}{(x^2+4)}}]dx\)
= \(∫{1+\frac {2}{x^2+(\sqrt 3)^2}-\frac {6}{x^2+2^2}}dx\)
= \(x+2(\frac {1}{\sqrt 3}tan^{-1}\frac {x}{\sqrt 3})-6(\frac 12 tan^{-1}\frac x2)+C\)
= \(x+\frac {2}{\sqrt 3}tan^{-1}\frac { x}{\sqrt 3}-3tan^{-1}\frac x2+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,