\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\) = \(1- \frac {(4x^2+10)}{(x^2+3)(x^2+4)}\)
Let \(\frac {(4x^2+10)}{(x^2+3)(x^2+4)}\) = \(\frac {Ax+B}{(x^2+3)}+\frac {Cx+D}{(x^2+4)}\)
\(4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)\)
\(4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D\)
\(4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(4B+3D)\)
\(Equating\ the\ coefficients\ of\ x^3, x^2, x,\ and\ constant \ term,\ we\ obtain\)
\(A + C = 0\)
\(B + D = 4\)
\(4A + 3C = 0\)
\(4B + 3D = 10\)
\(On\ solving\ these \ equations,\ we \ obtain\)
\(A = 0, B = −2, C = 0, \ and\ D = 6\)
∴ \(\frac {(4x^2+10)}{(x^2+3)(x^2+4)}\) =\(-\frac {2}{(x^2+3)}+\frac {6}{(x^2+4)}\)
\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\) = 1\(-\frac {2}{(x^2+3)}+\frac {6}{(x^2+4)}\)
⇒ \(∫\)\(\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\ dx\) = \(∫[{1+\frac {2}{(x^2+3)}-\frac {6}{(x^2+4)}}]dx\)
= \(∫{1+\frac {2}{x^2+(\sqrt 3)^2}-\frac {6}{x^2+2^2}}dx\)
= \(x+2(\frac {1}{\sqrt 3}tan^{-1}\frac {x}{\sqrt 3})-6(\frac 12 tan^{-1}\frac x2)+C\)
= \(x+\frac {2}{\sqrt 3}tan^{-1}\frac { x}{\sqrt 3}-3tan^{-1}\frac x2+C\)
What is the Planning Process?
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,