Question:

$ \int{(x+1){{(x+2)}^{7}}}(x+3)dx $ is equal to

Updated On: Jun 6, 2022
  • $ \frac{{{(x+2)}^{10}}}{10}-\frac{{{(x+2)}^{8}}}{8}+C $
  • $ \frac{{{(x+1)}^{2}}}{2}-\frac{{{(x+2)}^{8}}}{8}-\frac{{{(x+3)}^{2}}}{2}+C $
  • $ \frac{{{(x+2)}^{10}}}{10}+C $
  • $ \frac{{{(x+1)}^{2}}}{2}+\frac{{{(x+2)}^{8}}}{8}+\frac{{{(x+3)}^{2}}}{2}+C $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $ I=\int{(x+1){{(x+2)}^{7}}(x+3)}dx $
Putting $ x+2=t $
$ \Rightarrow $ $ dx=dt $
Also, $ x+1=t-1 $ and $ x+3=t+1 $
$ \therefore $ $ I=\int{(t-1){{t}^{7}}}(t+1)dt $
$=\int{({{t}^{2}}-1)}{{t}^{7}}dt $
$=\int{{{t}^{9}}}dt-\int{{{t}^{7}}}dt $
$=\frac{{{t}^{10}}}{10}-\frac{{{t}^{8}}}{8}+c $
$=\frac{{{(x+2)}^{10}}}{10}-\frac{{{(x+2)}^{8}}}{8}+c $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.