Consider \(\vec a\) \(= (\hat i-2\hat j+3\hat k)\) and \(\vec b\) =\( (2\hat i+\hat j-3\hat k)\).
It can be observed that:
\(|\vec a|\)= \(\sqrt {1^2+(-2)^2+3^2}\) = \(\sqrt {1+4+9}\) = \(\sqrt {14}\)
\(|\vec b|\) = \(\sqrt {2^2+1^2+(-3)^2}\) = \(\sqrt {4+1+9}\) = \(\sqrt {14}\)
Hence, \(\vec a\) and \(\vec b\) are two different vectors having the same magnitude. The vectors are different because they have different directions.
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |
When a vector is multiplied by a scalar quantity, the magnitude of the vector changes in proportion to the scalar magnitude, but the direction of the vector remains the same.
In contrast, the scalar has only magnitude, and the vectors have both magnitude and direction. To determine the magnitude of a vector, we must first find the length of the vector. The magnitude of a vector formula denoted as 'v', is used to compute the length of a given vector ‘v’. So, in essence, this variable is the distance between the vector's initial point and to the endpoint.