an = n(n+2)
Substituting n = 1, 2, 3, 4, and 5, we obtain
a1= 1(1+2)=3
a2= 2(2+2)=8
a3= 3(3+2)=15
a4= 4(4+2)=24
a5= 5(5+2)=35
Therefore, the required terms are 3, 8, 15, 24, and 35.
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to