Step 1: The problem involves ellipses with the origin as the focus and \(x = 4\) as the directrix. For ellipses, the general property is that the sum of distances from any point on the ellipse to the two foci is constant.
Step 2: When we focus on the minor axis of an ellipse, the locus of the end of the minor axis behaves like a parabola. This is because the directrix and the focus define a parabolic shape, a known property of conic sections. The directrix acts as a line, and the focus remains fixed at the origin.
Step 3: Therefore, the locus of the end of the minor axis, given these conditions, forms a parabola.
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: