Given A.P. is \(3, 15, 27, 39, …….. \)
\(a = 3\) and \(d = a_2 − a_1 = 15 − 3 = 12\)
\(a_{54} = a + (54 − 1) d\)
\(a_{54} = 3 + (53) (12)\)
\(a_{54}= 3 + 636 = 639\)
Now \(a_{54} +132 = 639 + 132 = 771\)
We have to find the term of this A.P. which is \(771\).
Let nth term be \(771\).
\(a_n = a + (n − 1) d\)
\(771 = 3 + (n − 1) 12\)
\(768 = (n − 1) 12\)
\(n − 1 = \frac {768}{12}\)
\(n − 1 = 64\)
\(n = 65\)
Therefore, 65th term was \(132\) more than 54th term.
Alternatively,
Let nth term be \(132\) more than 54th term.
\(n = 54+\frac {132}{12}\)
\(n = 54+11\)
\(n = 65 ^{th}\)term.
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम
शहनाई की जादुई आवाज का असर हमारे सिर चढ़कर बोलने लगता है । (मिश्र वाक्य में बदलिए)