Step 1: Understand the concept of critical speed and vibratory response.
The critical speed of a shaft is the rotational speed at which resonance occurs, leading to maximum vibratory response. When operating close to this speed, the response amplitude is significantly amplified due to resonance. However, if the shaft operates at a speed well above the critical speed, the system moves into a supercritical operating region where the vibratory response amplitude is reduced.
Step 2: Analyze the reduction of vibratory response amplitude.
Operating the shaft at a speed exceeding the critical speed reduces the ratio of vibratory response amplitude to the forcing amplitude due to the dynamic characteristics of the system in the supercritical range. Beyond the critical speed, the shaft's response stabilizes as it passes through resonance.
Step 3: Analyze other options.
Reduction in axial vibrations (Option A): This affects the axial stability but does not directly reduce the vibratory response amplitude caused by resonance.
Increase in the fundamental frequency (Option B): While increasing the fundamental frequency shifts the resonance point, it does not directly address the behavior in the supercritical region.
Decrease in rotational speed (Option C): Slowing down the rotational speed may avoid resonance, but it does not specifically target the reduction of vibratory response amplitude at high speeds.
Conclusion: Operating the shaft at a speed exceeding the critical speed reduces the ratio of vibratory response amplitude to the forcing amplitude.
A steel deck plate of a tanker is supported by two longitudinal stiffeners as shown in the figure. The width of the plate is \( a \) and its length is 5 times the width. Assume that the long edge is simply supported, and the short edge is free. The plate is loaded by a distributed pressure, \( p = p_0 \sin\left(\frac{\pi y}{a}\right) \), where \( p_0 \) is the pressure at \( y = a/2 \). The flexural rigidity of the plate is \( D \). The plate equation is given by
Consider the matrices
\( M = \begin{pmatrix}
2 & 1 \\
0 & 2
\end{pmatrix} \)
\( N = \begin{pmatrix}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 0
\end{pmatrix} \)
Which one of the following is true?
A ship with a standard right-handed coordinate system has positive \(x\), \(y\), and \(z\) axes respectively pointing towards bow, starboard, and down as shown in the figure. If the ship takes a starboard turn, then the drift angle, sway velocity, and the heel angle of the ship for a steady yaw rate respectively are:
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).
A multi-cell midship section of a ship with \( B = 40 \, {m} \) and \( D = 20 \, {m} \) is shown in the figure. The shear-flows are given as \( q_1 = q_2 = q_3 = 0.9376 \, {MN/m} \). The applied twisting moment on the midship section is ___________ MN·m (rounded off to two decimal places).
Consider a weightless, frictionless piston with a 2 kg mass placed on it as shown in the figure. At equilibrium in position 1, the cylinder contains 0.1 kg of air. The piston cross-sectional area is 0.01 m2. The ambient pressure in the surroundings outside the piston-cylinder arrangement is 0 bar (absolute). When the mass above the piston is removed instantaneously, it moves up and hits the stop at position 2, which is 0.1 m above the initial position.
Assuming \( g = 9.81 \, {m/s}^2 \), the thermodynamic work done by the system during this process is ________ J (answer in integer).