Consider a weightless, frictionless piston with a 2 kg mass placed on it as shown in the figure. At equilibrium in position 1, the cylinder contains 0.1 kg of air. The piston cross-sectional area is 0.01 m2. The ambient pressure in the surroundings outside the piston-cylinder arrangement is 0 bar (absolute). When the mass above the piston is removed instantaneously, it moves up and hits the stop at position 2, which is 0.1 m above the initial position.
Assuming \( g = 9.81 \, {m/s}^2 \), the thermodynamic work done by the system during this process is ________ J (answer in integer).
Step 1: Understanding the work done.
The problem involves a weightless, frictionless piston with a given mass placed on it, which moves up when the mass is removed. The thermodynamic work in this case is done by the system as the air expands and pushes the piston upward. The work done is given by: \[ W = P \Delta V \] where:
\( P \) is the pressure exerted by the gas,
\( \Delta V \) is the change in volume.
Step 2: Pressure inside the cylinder.
Since the ambient pressure outside the piston-cylinder arrangement is 0 bar (absolute), the pressure inside the cylinder is due to the weight of the piston and the air above it. However, since the problem states that the pressure outside the cylinder is 0 bar (absolute), and there is no external force acting to compress the gas, the pressure inside the cylinder becomes 0.
Step 3: Work calculation.
Since the pressure inside the cylinder is 0, the work done during the expansion is: \[ W = P \Delta V = 0 \times \Delta V = 0. \]
Final Answer: The thermodynamic work done by the system is \( \boxed{0} \, {J} \).
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
An ideal gas has undergone through the cyclic process as shown in the figure. Work done by the gas in the entire cycle is _____ $ \times 10^{-1} $ J. (Take $ \pi = 3.14 $)
Match the List-I with List-II.
Choose the correct answer from the options given below:
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).
A multi-cell midship section of a ship with \( B = 40 \, {m} \) and \( D = 20 \, {m} \) is shown in the figure. The shear-flows are given as \( q_1 = q_2 = q_3 = 0.9376 \, {MN/m} \). The applied twisting moment on the midship section is ___________ MN·m (rounded off to two decimal places).
Consider the psychrometric process denoted by the straight line from state 1 to 2 in the figure. The specific humidity, Dry Bulb Temperature (DBT), and Wet Bulb Temperature (WBT) at the two states are shown in the table. The latent heat of vaporization of water \( h_{fg} = 2440 \, {kJ/kg} \). If the flow rate of air is 1 kg/s, the rate of heat transfer from the air is _________ kW (rounded off to two decimal places).
Water of density \( \rho = 1000 \, {kg/m}^3 \) flows with a velocity \( V = 50 \, {m/s} \) through a 180° curved tube of uniform cross-section as shown in the figure. If the flow rate is \( 0.06 \, {m}^3/{s} \), the magnitude of the reaction force \( F_x \) required to keep it stationary is ________ kN (rounded off to one decimal place).