Step 1: Analyze continuity.
The function \( f(x) = |x| - 1 \) is continuous everywhere because both \( |x| \) and constant shifts are continuous functions.
Step 2: Analyze differentiability.
The function \( f(x) \) is not differentiable at \( x = 0 \), since the left-hand and right-hand derivatives are not equal there.
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).
A multi-cell midship section of a ship with \( B = 40 \, {m} \) and \( D = 20 \, {m} \) is shown in the figure. The shear-flows are given as \( q_1 = q_2 = q_3 = 0.9376 \, {MN/m} \). The applied twisting moment on the midship section is ___________ MN·m (rounded off to two decimal places).