Step 1: Understanding "contrary".
In classical logic, the contrary of a universal affirmative proposition \( (\forall x)Px \) is the universal negative: \[ (\forall x) \sim P(x) \] This asserts that no individual in the domain satisfies \(P(x)\), which is directly contrary to every individual satisfying it.
Step 2: Difference from contradiction.
Note that the contradiction of \( (\forall x)Px \) is \( \sim (\forall x)Px \equiv (\exists x)\sim Px \), but the contrary here is another universal statement: \( (\forall x)\sim Px \), asserting the opposite property universally.
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________