Step 1: Understand the function and continuity at \(x=1\)
The function is defined as:
\( f(x) = \frac{x - 1}{|x - 1| + 2(x - 1)^2} \) for \( x \neq 1 \), and \( f(1) = 1 \).
To check continuity at \( x = 1 \), the left-hand limit (LHL) and right-hand limit (RHL) as \( x \to 1 \) must be equal and also equal to \( f(1) \).
Step 2: Calculate the right-hand limit (as \( x \to 1^+ \))
For \( x > 1 \), \( |x - 1| = x - 1 \). So,
\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x - 1}{(x - 1) + 2(x - 1)^2} = \lim_{h \to 0^+} \frac{h}{h + 2h^2} = \lim_{h \to 0^+} \frac{h}{h(1 + 2h)} = \lim_{h \to 0^+} \frac{1}{1 + 2h} = 1
\]
Step 3: Calculate the left-hand limit (as \( x \to 1^- \))
For \( x < 1 \), \( |x - 1| = -(x - 1) \). So,
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x - 1}{-(x - 1) + 2(x - 1)^2} = \lim_{h \to 0^-} \frac{h}{-h + 2h^2} = \lim_{h \to 0^-} \frac{h}{-h(1 - 2h)} = \lim_{h \to 0^-} \frac{1}{-1 + 2h} = -1
\]
Step 4: Compare limits and function value at \(x=1\)
The left-hand limit is \(-1\), the right-hand limit is \(1\), and the function value at \(x=1\) is \(1\).
Since \(\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)\), the limit does not exist at \(x=1\).
Hence, the function is discontinuous at \(x=1\).