The paramagnetic behaviour depends on the number of unpaired electrons. Using the electronic configurations:
\(Complex\) | \(\text{Number of unpaired electrons}\) | \(\mu = \sqrt{n(n+2)}\) B.M. |
---|---|---|
\([\text{Co(H}_2\text{O)}_6]^{2+}\) | 3 | 3.87 |
\([\text{Fe(H}_2\text{O)}_6]^{2+}\) | 4 | 4.89 |
\([\text{Mn(H}_2\text{O)}_6]^{2+}\) | 5 | 5.92 |
\([\text{Cr(H}_2\text{O)}_6]^{2+}\) | 4 | 4.89 |
The least paramagnetic complex is \([\text{Co(H}_2\text{O)}_6]^{2+}\), as it has the fewest unpaired electrons (3).
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $