The paramagnetic behaviour depends on the number of unpaired electrons. Using the electronic configurations:
| \(Complex\) | \(\text{Number of unpaired electrons}\) | \(\mu = \sqrt{n(n+2)}\) B.M. |
|---|---|---|
| \([\text{Co(H}_2\text{O)}_6]^{2+}\) | 3 | 3.87 |
| \([\text{Fe(H}_2\text{O)}_6]^{2+}\) | 4 | 4.89 |
| \([\text{Mn(H}_2\text{O)}_6]^{2+}\) | 5 | 5.92 |
| \([\text{Cr(H}_2\text{O)}_6]^{2+}\) | 4 | 4.89 |
The least paramagnetic complex is \([\text{Co(H}_2\text{O)}_6]^{2+}\), as it has the fewest unpaired electrons (3).
Given below are two statements regarding conformations of n-butane. Choose the correct option. 
Consider a weak base \(B\) of \(pK_b = 5.699\). \(x\) mL of \(0.02\) M HCl and \(y\) mL of \(0.02\) M weak base \(B\) are mixed to make \(100\) mL of a buffer of pH \(=9\) at \(25^\circ\text{C}\). The values of \(x\) and \(y\) respectively are
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.