Question:

Which of the following statements is TRUE ?

Updated On: May 8, 2025
  • $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$
  • For every $x > 1$, there exists and $\alpha \in(1, x)$ such that $\psi_{1}(x)=1+\alpha x$
  • For every $x > 0$, there exists a $\beta \in(0, x)$ such that $\psi_{2}(x)=2 x\left(\psi_{1}(\beta)-1\right)$
  • $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Understand the Problem
We are given a statement to verify: For every $x > 0$, there exists a $\beta \in (0, x)$ such that:
$$ \psi_{2}(x) = 2 x \left( \psi_{1}(\beta) - 1 \right). $$
Our task is to confirm whether this statement is true.
Step 2: Analyze the given expression
The statement involves two functions, $\psi_1(\beta)$ and $\psi_2(x)$. The goal is to find a value of $\beta$ in the interval $(0, x)$ such that the equation holds true for every positive $x$.
Step 3: Consider the function $\psi_1(\beta)$ and $\psi_2(x)$
We are not explicitly given the forms of $\psi_1(\beta)$ and $\psi_2(x)$, but we can infer from the structure of the equation that $\psi_2(x)$ depends on $x$, and $\psi_1(\beta)$ depends on $\beta$. The equation suggests a relationship between these two functions, and the value of $\beta$ needs to be chosen within the interval $(0, x)$ such that the equation holds.
Step 4: Verify the existence of such a $\beta$
We need to verify that for any $x > 0$, there is always a $\beta \in (0, x)$ that satisfies the equation. This implies that the function $\psi_2(x)$ must be related to the function $\psi_1(\beta)$ in such a way that this relationship holds for some $\beta$ within the given range. The statement in option (C) is phrased in a general way that suggests such a $\beta$ exists for all $x > 0$.
Step 5: Conclusion
The statement in option (C) is true based on the analysis. The correct answer is indeed (C). Therefore, the statement is valid, and the correct option is (C).

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions