- (A) The term \( \log \left( 1 + \frac{1}{n^3} \right) \) behaves like \( \frac{1}{n^3} \) for large \( n \), so we can approximate:
\[
n \log \left( 1 + \frac{1}{n^3} \right) \sim n \cdot \frac{1}{n^3} = \frac{1}{n^2}.
\]
The series \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, and hence, the series in (A) is convergent.
- (B) The term \( 1 - \cos \left( \frac{1}{n} \right) \) behaves like \( \frac{1}{2n^2} \) for large \( n \) because:
\[
1 - \cos x \approx \frac{x^2}{2} \text{ for small } x.
\]
Thus, for large \( n \),
\[
\left( 1 - \cos \left( \frac{1}{n} \right) \right) \log n \sim \frac{1}{2n^2} \log n.
\]
Since \( \sum_{n=1}^{\infty} \frac{\log n}{n^2} \) converges, the series in (B) is convergent.
- (C) The term \( n^2 \log \left( 1 + \frac{1}{n^3} \right) \sim n^2 \cdot \frac{1}{n^3} = \frac{1}{n} \), and \( \sum_{n=1}^{\infty} \frac{1}{n} \) diverges. Therefore, the series in (C) is divergent.
- (D) The term \( 1 - \cos \left( \frac{1}{\sqrt{n}} \right) \) behaves like \( \frac{1}{2n} \) for large \( n \), so the series behaves like:
\[
\left( 1 - \cos \left( \frac{1}{\sqrt{n}} \right) \right) \log n \sim \frac{1}{2n} \log n.
\]
Since \( \sum_{n=1}^{\infty} \frac{\log n}{n} \) diverges, the series in (D) is divergent.
Therefore, the correct answers are (A) and (B).