To determine which solution has the highest depression in freezing point, we need to consider the colligative properties of solutions, specifically the freezing point depression.
Colligative Properties: Freezing point depression is given by the formula:
ΔTf = i · Kf · m
where ΔTf is the depression in freezing point, i is the van 't Hoff factor (number of particles the solute breaks into), Kf is the cryoscopic constant of the solvent, and m is the molality of the solution.
Analyzing Each Option:
Conclusion: Given that acetic acid has a higher molar mass than glucose and ionizes in water, it will result in a greater freezing point depression.
Thus, the solution with the highest depression in freezing point is: 180 g of acetic acid dissolved in water.
According to the generally accepted definition of the ideal solution there are equal interaction forces acting between molecules belonging to the same or different species. (This is equivalent to the statement that the activity of the components equals the concentration.) Strictly speaking, this concept is valid in ecological systems (isotopic mixtures of an element, hydrocarbons mixtures, etc.). It is still usual to talk about ideal solutions as limiting cases in reality since very dilute solutions behave ideally with respect to the solvent. This law is further supported by the fact that Raoult’s law empirically found for describing the behaviour of the solvent in dilute solutions can be deduced thermodynamically via the assumption of ideal behaviour of the solvent.
Answer the following questions:
(a) Give one example of miscible liquid pair which shows negative deviation from Raoult’s law. What is the reason for such deviation?
(b) (i) State Raoult’s law for a solution containing volatile components.
OR
(ii) Raoult’s law is a special case of Henry’s law. Comment.
(c) Write two characteristics of an ideal solution.
A solution is a homogeneous mixture of two or more components in which the particle size is smaller than 1 nm.
For example, salt and sugar is a good illustration of a solution. A solution can be categorized into several components.
The solutions can be classified into three types:
On the basis of the amount of solute dissolved in a solvent, solutions are divided into the following types: