Question:

Which of the following numbers are not perfect cubes: 
  1. 216 
  2. 128 
  3.  1000 
  4.  100 
  5.  46656

Updated On: Nov 30, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(216\)
Factorization of 216
Prime factors of \(216 = 2 × 2 × 2 × 3 × 3 × 3\)
Here all factors are in groups of \(3\)’s (in triplets)
Therefore, \(216\) is a perfect cube number.


(ii) \(128\)
Factorization of 128
Prime factors of \(128 = 2× 2 × 2 × 2× 2 × 2× 2\)
Here one factor \(2\) does not appear in a \(3\)’s group
Therefore, \(128\) is not a perfect cube.


(iii) \(1000\)
Factorization of 1000
Prime factors of \(1000 = 2\times2\times2\times5\times5\times5\)
Here all factors appear in \(3\)’s group.
Therefore, \(1000\) is a perfect cube.


(iv) \(100\)
Factorization of 100
Prime factors of \( 100 = 2 \times 2 \times 5 \times 5\)
Here all factors do not appear in \(3\)’s group.
Therefore, \(100\) is not a perfect cube.


(v) \(46656\)
Factorization of 46656
Prime factors of \(46656 =2 \times2\times2\times2\times2\times2\times3\times3\times3\times3\times3\times3\)
Here all factors appear in \(3\)’s group.
Therefore, \(46656\) is a perfect cube.

Was this answer helpful?
0
0