Question:

Which of the following functions qualify to be a cumulative density function of a random variable 𝑋 ?

Updated On: Oct 1, 2024
  • \(f(x) = \begin{cases}     1-e^{-x}       & \quad π‘₯ ∈ (0, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
  • 𝐹(π‘₯) = (1 + 𝑒 βˆ’π‘₯ ) βˆ’1 , π‘₯ ∈ (βˆ’βˆž, ∞)
  • \(f(x) = \begin{cases}     1-x^{-1}in(x),       & \quad  π‘₯ ∈ (e, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
  • \(f(x) = \begin{cases}     1-(In(x))^{-1},    & \quad π‘₯ ∈ (e, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

The correct options is (A): \(f(x) = \begin{cases}     1-e^{-x}       & \quad π‘₯ ∈ (0, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\), (B): 𝐹(π‘₯) = (1 + 𝑒 βˆ’π‘₯ ) βˆ’1 , π‘₯ ∈ (βˆ’βˆž, ∞) and (D): \(f(x) =   \begin{cases}     1-(In(x))^{-1},    & \quad π‘₯ ∈ (e, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
Was this answer helpful?
0
0

Top Questions on Probability theory

View More Questions

Questions Asked in IIT JAM EN exam

View More Questions