Question:

Which of the following functions qualify to be a cumulative density function of a random variable 𝑋 ?

Updated On: Nov 18, 2025
  • \(f(x) = \begin{cases}     1-e^{-x}       & \quad π‘₯ ∈ (0, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
  • 𝐹(π‘₯) = (1 + 𝑒 βˆ’π‘₯ ) βˆ’1 , π‘₯ ∈ (βˆ’βˆž, ∞)
  • \(f(x) = \begin{cases}     1-x^{-1}in(x),       & \quad  π‘₯ ∈ (e, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
  • \(f(x) = \begin{cases}     1-(In(x))^{-1},    & \quad π‘₯ ∈ (e, ∞)  \\     0,  & \quad   \text{ otherwis}   \end{cases}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

A cumulative distribution function (CDF) of a random variable \( X \) must satisfy the following properties:

  1. The function \( F(x) \) is non-decreasing.
  2. \(\lim_{x \to -\infty} F(x) = 0\) and \(\lim_{x \to \infty} F(x) = 1\).
  3. \(F(x)\) is right-continuous. 

Let's evaluate the options given:

  1. \(f(x) = \begin{cases} 1-e^{-x} & \quad x ∈ (0, ∞) \\ 0, & \quad \text{otherwise} \end{cases}\)
    • As \( x \to 0^{+} \), \( f(x) \to 0 \).
    • As \( x \to \infty \), \( f(x) \to 1 \).
    • This function is non-decreasing and bounded between 0 and 1.
    • Therefore, this is a valid CDF.

\( F(x) = \frac{1}{1 + e^{-x}}, \, x \in (-\infty, \infty) \)

  • As \( x \to -\infty \), \( F(x) \to 0 \).
  • As \( x \to \infty \), \( F(x) \to 1 \).
  • This function is non-decreasing and bounded between 0 and 1.
  • Therefore, this is a valid CDF.
  1. \(f(x) = \begin{cases} 1-x^{-1}\text{in}(x), & \quad x ∈ (e, ∞) \\ 0, & \quad \text{otherwise} \end{cases}\)
    • As \( x \to e^+ \), this does not converge to 0.
    • This function may not be non-decreasing over its domain.
    • Therefore, this cannot be a valid CDF.
  2. \(f(x) = \begin{cases} 1 - (\ln(x))^{-1}, & \quad x ∈ (e, ∞) \\ 0, & \quad \text{otherwise} \end{cases}\)
    • As \( x \to e^+ \), \( f(x) \to 0 \).
    • As \( x \to \infty \), \( f(x) \to 1 \).
    • This function is non-decreasing and bounded between 0 and 1 over its domain.
    • Therefore, this is a valid CDF.

Based on the evaluation, the functions that qualify to be cumulative density functions are:

  • \(f(x) = \begin{cases} 1-e^{-x} & \quad x ∈ (0, ∞) \\ 0, & \quad \text{otherwise} \end{cases}\)
  • \( F(x) = \frac{1}{1 + e^{-x}}, \, x \in (-\infty, \infty) \)
  • \(f(x) = \begin{cases} 1 - (\ln(x))^{-1}, & \quad x ∈ (e, ∞) \\ 0, & \quad \text{otherwise} \end{cases}\)
Was this answer helpful?
0
0

Questions Asked in IIT JAM EN exam

View More Questions