The utility function for consumer A is:
\[ U_A = 2X^{0.4} Y^{0.6} \]
The marginal utilities for \( X \) and \( Y \) are:
\[ MU_{X_A} = \frac{\partial U_A}{\partial X} = 0.8X^{-0.6} Y^{0.6} \]
\[ MU_{Y_A} = \frac{\partial U_A}{\partial Y} = 1.2X^{0.4} Y^{-0.4} \]
The marginal rate of substitution (MRS) for consumer A is:
\[ MRS_A = \frac{MU_{X_A}}{MU_{Y_A}} = \frac{0.8X^{-0.6} Y^{0.6}}{1.2X^{0.4} Y^{-0.4}} \]
\[ = \frac{0.8}{1.2} \times \frac{Y}{X} = \frac{2}{3} \times \frac{Y}{X} \]
The utility function for consumer B is:
\[ U_B = X^{0.3} Y^{0.7} \]
The marginal utilities for \( X \) and \( Y \) are:
\[ MU_{X_B} = \frac{\partial U_B}{\partial X} = 0.3X^{-0.7} Y^{0.7} \]
\[ MU_{Y_B} = \frac{\partial U_B}{\partial Y} = 0.7X^{0.3} Y^{-0.3} \]
The marginal rate of substitution (MRS) for consumer B is:
\[ MRS_B = \frac{MU_{X_B}}{MU_{Y_B}} = \frac{0.3X^{-0.7} Y^{0.7}}{0.7X^{0.3} Y^{-0.3}} \]
\[ = \frac{0.3}{0.7} \times \frac{Y}{X} = \frac{3}{7} \times \frac{Y}{X} \]
At equilibrium, the MRS for both consumers must equal the price ratio \( \frac{P_X}{P_Y} \).
Assuming \( P_Y = 1 \), we get:
\[ MRS_A = MRS_B = \frac{P_X}{P_Y} = P_X \]
Substituting the expressions for \( MRS_A \) and \( MRS_B \):
\[ \frac{2}{3} \times \frac{Y}{X} = \frac{3}{7} \times \frac{Y}{X} \]
Since \( Y/X \) cancels out (as \( Y, X > 0 \)), we get:
\[ \frac{2}{3} = \frac{3}{7} \]
Solving for \( P_X \):
\[ P_X = \frac{\frac{3}{7}}{\frac{2}{3}} = \frac{3}{7} \times \frac{3}{2} = \frac{9}{14} \]
Approximating:
\[ P_X = 0.21 \]
The equilibrium price of good X is 0.21.