Substituting \( Y_d = Y - T \) and \( T = 5 + 0.2Y \) into the IS equation:
\[ Y = 90 + 0.8(Y - (5 + 0.2Y)) - 100i + 300 \]
Expanding the equation:
\[ Y = 90 + 0.8(Y - 5 - 0.2Y) - 100i + 300 \]
\[ Y = 90 + 0.8(0.8Y - 5) - 100i + 300 \]
\[ Y = 90 + 0.64Y - 4 - 100i + 300 \]
\[ Y = 386 + 0.64Y - 100i \]
Rearrange to isolate \( Y \):
\[ Y - 0.64Y = 386 - 100i \]
\[ 0.36Y = 386 - 100i \]
\[ Y = \frac{386 - 100i}{0.36} \]
\[ Y = 1072.22 - 277.78i \]
Substituting \( M_s = 950 \) into the LM equation:
\[ 950 = 750 + 0.2Y - 260i \]
Rearrange:
\[ 950 - 750 = 0.2Y - 260i \]
\[ 200 = 0.2Y - 260i \]
Substituting \( Y = 1072.22 - 277.78i \):
\[ 200 = 0.2(1072.22 - 277.78i) - 260i \]
Expanding:
\[ 200 = 214.44 - 55.56i - 260i \]
\[ 200 = 214.44 - 315.56i \]
Solving for \( i \):
\[ 200 - 214.44 = -315.56i \]
\[ -14.44 = -315.56i \]
\[ i = \frac{14.44}{315.56} \approx 0.0457 \]
Substituting \( i \approx 0.0457 \) into \( Y \):
\[ Y = 1072.22 - 277.78(0.0457) \]
\[ Y = 1072.22 - 12.7 \approx 1059.52 \]
Substituting \( Y = 1059.52 \) into the tax equation:
\[ T = 5 + 0.2(1059.52) \]
\[ T = 5 + 211.9 \approx 215 \]
The value of \( T \) is 215.
βΉ | |
---|---|
\(NNP_FC\) | 380 |
Normal wear and tear | 40 |
Subsidies (Net) | 40 |
Intermediate Cost | 120 |
Net factor income to Abroad | (-20) |
List - I | List - II |
---|---|
(A) MPC | (I) \(\frac{1}{(1-MPC)}\) |
(B) AD | (II) \(\frac{\Delta c}{\Delta y}\) |
(C) K | (III) C+1 |
(D) If MPC = 0 | (IV) K=1 |