Step 1: Using the Probability Density Function (PDF) property
For a valid probability density function:
\[
\int_{1}^{3} f(x) \,dx = 1
\]
Substituting \( f(x) = k(x-1)^3 \),
\[
\int_{1}^{3} k(x-1)^3 \,dx = 1
\]
Step 2: Evaluating the integral
\[
k \int_{1}^{3} (x-1)^3 \,dx = 1
\]
Using the standard integral formula:
\[
\int (x-1)^3 \,dx = \frac{(x-1)^4}{4}
\]
Evaluating from \( x=1 \) to \( x=3 \):
\[
\frac{(3-1)^4}{4} - \frac{(1-1)^4}{4} = \frac{16}{4} - 0 = 4
\]
Step 3: Solving for \( k \)
\[
k(D) = 1
\]
\[
k = \frac{1}{4}
\]