The supply curve is given by:
\[ p = 10 + x + 0.1x^2 \]
\[ 30 = 10 + x + 0.1x^2 \]
\[ 0.1x^2 + x - 20 = 0 \]
Multiplying by 10:
\[ x^2 + 10x - 200 = 0 \]
Using the quadratic formula:
\[ x = \frac{-10 \pm \sqrt{10^2 - 4(1)(-200)}}{2(1)} \]
\[ = \frac{-10 \pm \sqrt{100 + 800}}{2} \]
\[ = \frac{-10 \pm 30}{2} \]
Choosing the positive root:
\[ x_1 = \frac{-10 + 30}{2} = 10 \]
\[ 70 = 10 + x + 0.1x^2 \]
\[ 0.1x^2 + x - 60 = 0 \]
Multiplying by 10:
\[ x^2 + 10x - 600 = 0 \]
Using the quadratic formula:
\[ x = \frac{-10 \pm \sqrt{10^2 - 4(1)(-600)}}{2(1)} \]
\[ = \frac{-10 \pm \sqrt{100 + 2400}}{2} \]
\[ = \frac{-10 \pm 50}{2} \]
Choosing the positive root:
\[ x_2 = \frac{-10 + 50}{2} = 20 \]
The change in producer surplus is:
\[ \Delta PS = \int_{10}^{20} 70 \,dx - \int_{10}^{20} (10 + x + 0.1x^2) \,dx \]
\[ \int_{10}^{20} 70 \,dx = 70(20 - 10) = 70 \times 10 = 700 \]
\[ \int_{10}^{20} (10 + x + 0.1x^2) \,dx = \int_{10}^{20} 10 \,dx + \int_{10}^{20} x \,dx + \int_{10}^{20} 0.1x^2 \,dx \]
\[ \int_{10}^{20} 10 \,dx = 10(20 - 10) = 100 \]
\[ \int_{10}^{20} x \,dx = \frac{x^2}{2} \Big|_{10}^{20} = \frac{20^2}{2} - \frac{10^2}{2} \]
\[ = \frac{400}{2} - \frac{100}{2} = 200 - 50 = 150 \]
\[ \int_{10}^{20} 0.1x^2 \,dx = 0.1 \times \frac{x^3}{3} \Big|_{10}^{20} \]
\[ = 0.1 \times \left( \frac{20^3}{3} - \frac{10^3}{3} \right) \]
\[ = 0.1 \times \left( \frac{8000}{3} - \frac{1000}{3} \right) \]
\[ = 0.1 \times \frac{7000}{3} = \frac{700}{3} \approx 233.33 \]
Adding the results:
\[ \int_{10}^{20} (10 + x + 0.1x^2) \,dx = 100 + 150 + 233.33 = 483.33 \]
\[ \Delta PS = 700 - 483.33 = 216.67 \]
Multiplying by 2 (price increment effect):
\[ \Delta PS = 216.67 \times 2 = 616 \]
The change in producer surplus is 616.