Question:

Which of the following functions is/are Riemann integrable on [0, 1] ?

Updated On: Oct 1, 2024
  • f(x)=0x12tdtf(x)=\int\limits^x_0|\frac{1}{2}-t|dt
  • f(x)={ xsin(1/x)if x0  0if x=0f(x)=\begin{cases}  x \sin(1/x) & \text{if }x \ne0 \\     0 & \text{if }x=0 \end{cases}
  • f(x)={1if xQ[0,1]  1otherwisef(x)=\begin{cases} 1 & \text{if }x \in Q ∩[0,1] \\     -1 & \text{otherwise} \end{cases}
  • f(x)={xif x[0,1)  0if x=1f(x)=\begin{cases} x & \text{if }x \in [0,1) \\     0 & \text{if } x=1\end{cases}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

The correct option is (A) : f(x)=0x12tdtf(x)=\int\limits^x_0|\frac{1}{2}-t|dt, (B) : f(x)={ xsin(1/x)if x0  0if x=0f(x)=\begin{cases}  x \sin(1/x) & \text{if }x \ne0 \\     0 & \text{if }x=0 \end{cases} and (D) : f(x)={ xif x[0,1)  0if x=1f(x)=\begin{cases}   x & \text{if }x \in [0,1) \\     0 & \text{if } x=1\end{cases}
Was this answer helpful?
0
0

Questions Asked in IIT JAM MA exam

View More Questions