Question:

Which of the following functions is/are Riemann integrable on [0, 1] ?

Updated On: Oct 1, 2024
  • \(f(x)=\int\limits^x_0|\frac{1}{2}-t|dt\)
  • \(f(x)=\begin{cases}  x \sin(1/x) & \text{if }x \ne0 \\     0 & \text{if }x=0 \end{cases}\)
  • \(f(x)=\begin{cases} 1 & \text{if }x \in Q ∩[0,1] \\     -1 & \text{otherwise} \end{cases}\)
  • \(f(x)=\begin{cases} x & \text{if }x \in [0,1) \\     0 & \text{if } x=1\end{cases}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

The correct option is (A) : \(f(x)=\int\limits^x_0|\frac{1}{2}-t|dt\), (B) : \(f(x)=\begin{cases}  x \sin(1/x) & \text{if }x \ne0 \\     0 & \text{if }x=0 \end{cases}\) and (D) : \(f(x)=\begin{cases}   x & \text{if }x \in [0,1) \\     0 & \text{if } x=1\end{cases}\)
Was this answer helpful?
0
0

Top Questions on Integral Calculus

View More Questions