Use geometric relationships in unit cells to relate ionic radii and edge length
In the CaCl structure:
The relationship between the ionic radii and edge length \( a \) is derived as follows:
\[ \text{Body diagonal} = 2(r_{\text{Ca}^{2+}} + r_{\text{Cl}^-}) \]
Equating the body diagonal to \( \sqrt{3}a \):
\[ 2(r_{\text{Ca}^{2+}} + r_{\text{Cl}^-}) = \sqrt{3}a \]
Dividing by 2:
\[ r_{\text{Ca}^{2+}} + r_{\text{Cl}^-} = \frac{\sqrt{3}a}{2} \]
The relationship between the ionic radii and edge length \( a \) is:
\[ r_{\text{Ca}^{2+}} + r_{\text{Cl}^-} = \frac{\sqrt{3}a}{2} \]
If the total volume of a simple cubic unit cell is 6.817 × 10-23 cm3, what is the volume occupied by particles in the unit cell?


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: