Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let $\vec a = 2\hat i + \hat j - 2\hat k$, $\vec b = \hat i + \hat j$ and $\vec c = \vec a \times \vec b$. Let $\vec d$ be a vector such that $|\vec d - \vec a| = \sqrt{11}$, $|\vec c \times \vec d| = 3$ and the angle between $\vec c$ and $\vec d$ is $\frac{\pi}{4}$. Then $\vec a \cdot \vec d$ is equal to
Let each of the two ellipses $E_1:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;(a>b)$ and $E_2:\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}=1A$
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to