Let $\vec a = 2\hat i + \hat j - 2\hat k$, $\vec b = \hat i + \hat j$ and $\vec c = \vec a \times \vec b$. Let $\vec d$ be a vector such that $|\vec d - \vec a| = \sqrt{11}$, $|\vec c \times \vec d| = 3$ and the angle between $\vec c$ and $\vec d$ is $\frac{\pi}{4}$. Then $\vec a \cdot \vec d$ is equal to
Let a vector \[ \vec a=\sqrt{2}\,\hat i-\hat j+\lambda \hat k,\ \lambda>0, \] make an obtuse angle with the vector \[ \vec b=-\lambda^2\hat i+4\sqrt{2}\hat j+4\sqrt{2}\hat k \] and an angle \( \theta \), \(\frac{\pi}{6}<\theta<\frac{\pi}{2}\), with the positive \(z\)-axis. If the set of all possible values of \( \lambda \) is \((\alpha,\beta)-\{\gamma\}\), then\(\alpha+\beta+\gamma\) is equal to ____________.
Consider the following reaction sequence.

One mole each of \(A_2(g)\) and \(B_2(g)\) are taken in a 1 L closed flask and allowed to establish the equilibrium at 500 K: \(A_{2}(g)+B_{2}(g) \rightleftharpoons 2AB(g)\). The value of x (missing enthalpy of \(B_2\) or related parameter) is ______ . (Nearest integer)}