
To determine which halide will not show an SN1 reaction, we must consider the stability of the carbocation formed during the reaction. The SN1 mechanism involves two steps: ionization to form a carbocation, followed by nucleophilic attack. The stability of the carbocation is crucial in determining whether an SN1 reaction will occur.
Let's analyze each provided option:
Based on the above analysis, option (B) is the only case where the SN1 reaction is not feasible due to the instability of the vinyl carbocation. Hence, the correct answer is (B) only.
The \(S_N1\) reaction mechanism proceeds through the formation of a carbocation intermediate. The stability of the carbocation plays a critical role in determining whether the reaction will proceed.
- Halide (A): \( \text{H}_2\text{C} = \text{CH} - \text{CH}_2\text{Cl} \) forms an allylic carbocation upon ionization, which is stabilized by resonance. Therefore, it is likely to undergo an \(S_N1\) reaction.
- Halide (B): \( \text{CH}_3 - \text{CH} = \text{CH} - \text{Cl} \) forms a carbocation that is not stabilized by resonance or inductive effects. This makes it unlikely to undergo an \(S_N1\) reaction, as the carbocation formed would be highly unstable.
- Halide (C): This compound forms a benzylic carbocation upon ionization, which is highly stabilized due to resonance with the aromatic ring, making it suitable for an \(S_N1\) reaction.
- Halide (D): \( \text{H}_3\text{C} - \text{C(Cl)H}_2 \) forms a tertiary carbocation, which is stable and favorable for the \(S_N1\) reaction due to hyperconjugation and inductive effects.
Therefore, the only halide that will not show an \(S_N1\) reaction is (B).
The Correct answer is: (B) only
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
