The \(S_N1\) reaction mechanism proceeds through the formation of a carbocation intermediate. The stability of the carbocation plays a critical role in determining whether the reaction will proceed.
- Halide (A): \( \text{H}_2\text{C} = \text{CH} - \text{CH}_2\text{Cl} \) forms an allylic carbocation upon ionization, which is stabilized by resonance. Therefore, it is likely to undergo an \(S_N1\) reaction.
- Halide (B): \( \text{CH}_3 - \text{CH} = \text{CH} - \text{Cl} \) forms a carbocation that is not stabilized by resonance or inductive effects. This makes it unlikely to undergo an \(S_N1\) reaction, as the carbocation formed would be highly unstable.
- Halide (C): This compound forms a benzylic carbocation upon ionization, which is highly stabilized due to resonance with the aromatic ring, making it suitable for an \(S_N1\) reaction.
- Halide (D): \( \text{H}_3\text{C} - \text{C(Cl)H}_2 \) forms a tertiary carbocation, which is stable and favorable for the \(S_N1\) reaction due to hyperconjugation and inductive effects.
Therefore, the only halide that will not show an \(S_N1\) reaction is (B).
The Correct answer is: (B) only
Number of \( ^1H \) NMR signals observed for the following compound is .............
The product(s) in the following transformation is(are)
The major products P and Q of the following reactions are
The major product in the following reaction sequence is
Pericyclic reactions involved in the synthesis of Vitamin D\(_2\) from Ergosterol are
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).