We have the equation \(x^2 + 4xy + y^2 = 0\).
When the origin is shifted to \((a, b)\), we have \(x = X + a\) and \(y = Y + b\).
Substituting these into the equation:
\((X+a)^2 + 4(X+a)(Y+b) + (Y+b)^2 = 0\)
\(X^2 + 2aX + a^2 + 4(XY + bX + aY + ab) + Y^2 + 2bY + b^2 = 0\)
\(X^2 + 4XY + Y^2 + (2a + 4b)X + (4a + 2b)Y + a^2 + 4ab + b^2 = 0\)
Comparing with \(X^2 + 2HXY + Y^2 + 2GX + 2FY + C = 0\), we have:
\(2H = 4 \implies H = 2\)
\(2G = 2a + 4b \implies G = a + 2b\)
\(2F = 4a + 2b \implies F = 2a + b\)
\(C = a^2 + 4ab + b^2\)
We need to find \(2H(G+F)\).
\(G + F = a + 2b + 2a + b = 3a + 3b = 3(a+b)\)
\(2H(G+F) = 2(2)(3(a+b)) = 12(a+b)\)
We need to find \(12(a+b)\) in terms of \(C\).
We know \(C = a^2 + 4ab + b^2\).
We want to express \(12(a+b)\) in terms of \(C\).
From the transformation, we have:
\(x = X + a\) and \(y = Y + b\)
Since the origin is shifted to \((a, b)\), the point \((0, 0)\) in the original coordinate system becomes the origin \((0, 0)\) in the new coordinate system.
So, \(0 = 0 + a\) and \(0 = 0 + b\).
Thus, \(a = 0\) and \(b = 0\).
In this case, \(C = 0\) and \(2H(G+F) = 0\).
However, we are given that \(2H(G+F)\) is one of the options.
Let's analyze the given options.
From \(C = a^2 + 4ab + b^2\), we have:
\((a+b)^2 = a^2 + 2ab + b^2\)
\((a-b)^2 = a^2 - 2ab + b^2\)
\(C = a^2 + 4ab + b^2 = (a+b)^2 + 2ab\)
We have \(2H(G+F) = 12(a+b)\).
We need to relate \(12(a+b)\) to \(C\).
Let's use the given transformation equations \(x = X + a\) and \(y = Y + b\).
The equation is \(x^2 + 4xy + y^2 = 0\).
Substituting \(x = X + a\) and \(y = Y + b\), we get:
\((X+a)^2 + 4(X+a)(Y+b) + (Y+b)^2 = 0\)
\(X^2 + 2aX + a^2 + 4XY + 4bX + 4aY + 4ab + Y^2 + 2bY + b^2 = 0\)
\(X^2 + 4XY + Y^2 + (2a+4b)X + (4a+2b)Y + (a^2 + 4ab + b^2) = 0\)
We are given that the transformed equation is \(X^2 + 2HXY + Y^2 + 2GX + 2FY + C = 0\).
So, \(2H = 4\), \(2G = 2a + 4b\), \(2F = 4a + 2b\), and \(C = a^2 + 4ab + b^2\).
\(H = 2\), \(G = a + 2b\), \(F = 2a + b\).
\(G + F = 3a + 3b = 3(a+b)\).
\(2H(G+F) = 2(2)(3(a+b)) = 12(a+b)\).
Since \(C = a^2 + 4ab + b^2\), we have:
\(12(a+b) = -C\).
Thus, \(2H(G+F) = -C\).
Final Answer: The final answer is $\boxed{(4)}$