The kinetic energy \( K \) is given by:
\[K = \frac{P^2}{2m}\]
Therefore, momentum \( P \) can be expressed as:
\[P = \sqrt{2mK}\]
If the final kinetic energy \( K_f \) is 36 times the initial kinetic energy \( K_i \), we have:
\[K_f = 36 K_i\]
Thus, the final momentum \( P_f \) will be:
\[P_f = \sqrt{2m \cdot 36K_i} = 6P_i\]
The percentage increase in momentum is:
\[\text{Percentage increase} = \frac{P_f - P_i}{P_i} \times 100\%\]
\[= \frac{6P_i - P_i}{P_i} \times 100\%\]
\[= \frac{5P_i}{P_i} \times 100\% = 500\%\]
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).