The kinetic energy \( K \) is given by:
\[K = \frac{P^2}{2m}\]
Therefore, momentum \( P \) can be expressed as:
\[P = \sqrt{2mK}\]
If the final kinetic energy \( K_f \) is 36 times the initial kinetic energy \( K_i \), we have:
\[K_f = 36 K_i\]
Thus, the final momentum \( P_f \) will be:
\[P_f = \sqrt{2m \cdot 36K_i} = 6P_i\]
The percentage increase in momentum is:
\[\text{Percentage increase} = \frac{P_f - P_i}{P_i} \times 100\%\]
\[= \frac{6P_i - P_i}{P_i} \times 100\%\]
\[= \frac{5P_i}{P_i} \times 100\% = 500\%\]
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):