For DC voltage:
\[ R = \frac{V}{I} = \frac{100}{5} = 20 \, \Omega \]
For AC voltage:
\[ X_L = 20\sqrt{3} \, \Omega \]
\[ Z = \sqrt{X_L^2 + R^2} = \sqrt{(20\sqrt{3})^2 + 20^2} = \sqrt{1200 + 400} = 40 \, \Omega \]
Power dissipated in the circuit:
\[ P = I_\text{rms}^2 R = \left( \frac{V_\text{rms}}{Z} \right)^2 \times R \]
\[ P = \left( \frac{200}{\sqrt{2} \times 40} \right)^2 \times 20 \]
\[ P = \left( \frac{200}{40\sqrt{2}} \right)^2 \times 20 = 250 \, \text{W} \]
Let's solve the problem step-by-step to find the power dissipated in the circuit.
First, we have a DC voltage of 100 V causing a DC current of 5 A to flow through the inductor. Since the current flows, the resistance \( R \) of the inductor can be determined using Ohm's law \( V = IR \). Thus:
\( R = \frac{V}{I} = \frac{100\,\text{V}}{5\,\text{A}} = 20\,\Omega \).
Now, consider the AC voltage scenario. Given the AC peak voltage \( V_0 = 200\,\text{V} \), the inductive reactance \( X_L = 20\sqrt{3}\,\Omega \) is provided. The impedance \( Z \) of the inductor in the AC circuit is therefore:
\( Z = \sqrt{R^2 + X_L^2} = \sqrt{20^2 + (20\sqrt{3})^2} \).
Calculating each term:
\( 20^2 = 400 \).
\((20\sqrt{3})^2 = 400 \times 3 = 1200 \).
Thus:
\( Z = \sqrt{400 + 1200} = \sqrt{1600} = 40\,\Omega \).
Next, calculate the RMS value of the AC voltage \( V_{\text{rms}} \):
\( V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{200}{\sqrt{2}} = 100\sqrt{2}\,\text{V} \).
The RMS current \( I_{\text{rms}} \) through the inductor can be calculated as:
\( I_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{100\sqrt{2}}{40} = \frac{5\sqrt{2}}{2}\,\text{A} \).
The power dissipated in the circuit, primarily due to the resistor, is given by \( P = I_{\text{rms}}^2 \times R \):
\( P = \left(\frac{5\sqrt{2}}{2}\right)^2 \times 20 \).
Calculating further:
\( \left(\frac{5\sqrt{2}}{2}\right)^2 = \frac{25 \times 2}{4} = 12.5 \).
Therefore,
\( P = 12.5 \times 20 = 250\,\text{W} \).
Hence, the power dissipated in the circuit is 250 W, which is within the given range of 250,250 W.
A 1 m long metal rod AB completes the circuit as shown in figure. The area of circuit is perpendicular to the magnetic field of 0.10 T. If the resistance of the total circuit is 2 \(\Omega\) then the force needed to move the rod towards right with constant speed (v) of 1.5 m/s is _____ N.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.