For DC voltage:
\[ R = \frac{V}{I} = \frac{100}{5} = 20 \, \Omega \]
For AC voltage:
\[ X_L = 20\sqrt{3} \, \Omega \]
\[ Z = \sqrt{X_L^2 + R^2} = \sqrt{(20\sqrt{3})^2 + 20^2} = \sqrt{1200 + 400} = 40 \, \Omega \]
Power dissipated in the circuit:
\[ P = I_\text{rms}^2 R = \left( \frac{V_\text{rms}}{Z} \right)^2 \times R \]
\[ P = \left( \frac{200}{\sqrt{2} \times 40} \right)^2 \times 20 \]
\[ P = \left( \frac{200}{40\sqrt{2}} \right)^2 \times 20 = 250 \, \text{W} \]
What are electromagnetic waves? Draw their propagation diagram. Show the electric field amplitude and magnetic field amplitude in the propagation diagram.
Define Mutual Inductance. Show that Henry = Newton Meter / Ampere².
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32