For DC voltage:
\[ R = \frac{V}{I} = \frac{100}{5} = 20 \, \Omega \]
For AC voltage:
\[ X_L = 20\sqrt{3} \, \Omega \]
\[ Z = \sqrt{X_L^2 + R^2} = \sqrt{(20\sqrt{3})^2 + 20^2} = \sqrt{1200 + 400} = 40 \, \Omega \]
Power dissipated in the circuit:
\[ P = I_\text{rms}^2 R = \left( \frac{V_\text{rms}}{Z} \right)^2 \times R \]
\[ P = \left( \frac{200}{\sqrt{2} \times 40} \right)^2 \times 20 \]
\[ P = \left( \frac{200}{40\sqrt{2}} \right)^2 \times 20 = 250 \, \text{W} \]
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: