To determine the effect on the root mean square (RMS) velocity of oxygen molecules when the temperature is doubled and oxygen molecules dissociate into atomic oxygen, we need to understand the formulas and concepts involved.
The overall effect of both doubling the temperature and dissociating the oxygen molecules into atoms results in a doubling of the RMS velocity of atomic oxygen.
Thus, the correct answer is: The velocity of atomic oxygen doubles.
The correct answer is (B) : The velocity of atomic oxygen doubles
As
\(v_{rms}=\sqrt{\frac{3RT}{M_0}}\)
T is doubled and oxygen molecule is dissociated into atomic oxygen molar mass is halved.
So,
\(v'_{rms}=\sqrt{\frac{3R×2T_0}{M_0/2}}=2v_{rms}\)
So velocity of atomic oxygen is doubled.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
