For a system of linear equations:
\[
a_1x + b_1y = c_1,\quad a_2x + b_2y = c_2
\]
No solution exists if:
\[
\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}
\]
Here:
\[
a_1 = 2,\quad b_1 = -8,\quad c_1 = 3
\]
\[
a_2 = k,\quad b_2 = 4,\quad c_2 = 10
\]
Condition:
\[
\frac{2}{k} = \frac{-8}{4} \quad \Rightarrow \quad \frac{2}{k} = -2 \quad \Rightarrow \quad k = -1
\]
But this makes $\frac{a_1}{a_2} = \frac{b_1}{b_2}$ AND $\frac{c_1}{c_2} = \frac{3}{10}$, which is not equal to $-2$, so no solution occurs. Wait, check:
No solution requires equal slope ratio but different constant ratio. If $k=2$:
\[
\frac{2}{2} = 1,\quad \frac{-8}{4} = -2 \quad \Rightarrow \quad \text{Not parallel},\quad \text{incorrect}
\]
Re-evaluating — Actually for no solution:
\[
\frac{a_1}{a_2} = \frac{b_1}{b_2}
\]
\[
\frac{2}{k} = \frac{-8}{4} = -2 \quad \Rightarrow \quad 2/k = -2 \quad \Rightarrow \quad k = -1
\]
Then $\frac{c_1}{c_2} = 3/10 \neq -2$, so indeed no solution occurs for $k=-1$.
Thus correct option is (c) $-1$.
\fbox{Final Answer: (c) $-1$}
%Quick tip