Equation 1: \( y = 9 - 2x \)
Equation 2: \( y = \frac{x - 2}{2} \)
Equation 1: \( y = 9 - 2x \)
Equation 2: \( y = \frac{x - 2}{2} \)
Plotting both lines, we observe that they intersect at the point: \[ (4, 1) \] This is the solution to the system of equations.
Substitute \( x = 4 \), \( y = 1 \) into both equations:
Equation 1:
\[ 2x + y = 2(4) + 1 = 8 + 1 = 9 \quad \text{✔ True} \]
Equation 2:
\[ x - 2y = 4 - 2(1) = 4 - 2 = 2 \quad \text{✔ True} \]
The solution is: \[ \boxed{x = 4,\ y = 1} \]
The obtuse angle between lines \(2y = x + 1\) and \(y = 3x + 2\) is:
What is the general solution of the equation \( \cot\theta + \tan\theta = 2 \)?
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।