Question:

What is the projection of vector \( \overrightarrow{DV} \) on vector \( \overrightarrow{DA} \)?

Show Hint

The projection of one vector onto another gives the component of the first vector along the direction of the second.
Updated On: Jan 13, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the formula for projection
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is given by: \[ \text{Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|}. \] Step 2: Compute \( \overrightarrow{DV} \)
\[ \overrightarrow{DV} = \overrightarrow{V} - \overrightarrow{D} = (-5\hat{i} + 4\hat{j} + 7\hat{k}). \] Step 3: Compute \( \overrightarrow{DV} \cdot \overrightarrow{DA} \)
From the previous calculations: \[ \overrightarrow{DV} \cdot \overrightarrow{DA} = (-5)(5) + (4)(2) + (7)(4) = -25 + 8 + 28 = 11. \] Step 4: Compute \( |\overrightarrow{DA}| \)
\[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{45} = 3\sqrt{5}. \] Step 5: Compute the projection
\[ \text{Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|} = \frac{11}{3\sqrt{5}}. \] Step 6: Final result
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is: \[ \frac{11\sqrt{5}}{15}. \]
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions

Questions Asked in CBSE CLASS XII exam

View More Questions