Question:

What is the projection of vector \( \overrightarrow{DV} \) on vector \( \overrightarrow{DA} \)?

Show Hint

The projection of one vector onto another gives the component of the first vector along the direction of the second.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Recall the formula for projection
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is given by: \[ \text{Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|}. \] Step 2: Compute \( \overrightarrow{DV} \)
\[ \overrightarrow{DV} = \overrightarrow{V} - \overrightarrow{D} = (-5\hat{i} + 4\hat{j} + 7\hat{k}). \] Step 3: Compute \( \overrightarrow{DV} \cdot \overrightarrow{DA} \)
From the previous calculations: \[ \overrightarrow{DV} \cdot \overrightarrow{DA} = (-5)(5) + (4)(2) + (7)(4) = -25 + 8 + 28 = 11. \] Step 4: Compute \( |\overrightarrow{DA}| \)
\[ |\overrightarrow{DA}| = \sqrt{(5)^2 + (2)^2 + (4)^2} = \sqrt{45} = 3\sqrt{5}. \] Step 5: Compute the projection
\[ \text{Projection} = \frac{\overrightarrow{DV} \cdot \overrightarrow{DA}}{|\overrightarrow{DA}|} = \frac{11}{3\sqrt{5}}. \] Step 6: Final result
The projection of \( \overrightarrow{DV} \) on \( \overrightarrow{DA} \) is: \[ \frac{11\sqrt{5}}{15}. \]
Was this answer helpful?
0
0