Step 1: Recall standard result.
The maximum value of an expression of the form:
\[
a \sin x + b \cos x
\]
is given by:
\[
\sqrt{a^2 + b^2}
\]
Step 2: Apply values.
Here, \(a = 21\), \(b = 72\).
So,
\[
\text{Max Value} = \sqrt{21^2 + 72^2}
\]
\[
= \sqrt{441 + 5184}
\]
\[
= \sqrt{5625} = 75
\]
Step 3: Verification using derivative method.
Alternatively, let
\[
f(x) = 21 \sin x + 72 \cos x
\]
Differentiate:
\[
f'(x) = 21 \cos x - 72 \sin x
\]
Setting \(f'(x) = 0\):
\[
21 \cos x = 72 \sin x \quad \Rightarrow \quad \tan x = \frac{21}{72} = \frac{7}{24}
\]
So,
\[
\sin x = \frac{7}{25}, \quad \cos x = \frac{24}{25}
\]
Substitute:
\[
f(x) = 21 \cdot \frac{7}{25} + 72 \cdot \frac{24}{25}
\]
\[
= \frac{147}{25} + \frac{1728}{25} = \frac{1875}{25} = 75
\]
Final Answer:
\[
\boxed{75}
\]