Use the formula for propagation of errors to find the percentage error in P. The percentage error in xn is n times the percentage error in x. The percentage error in √x is half the percentage error in x.
The percentage change in \( P \) is given by: \[ \frac{\Delta P}{P} \times 100 = 2 \frac{\Delta a}{a} + 3 \frac{\Delta b}{b} + \frac{\Delta c}{c} + \frac{1}{2} \frac{\Delta d}{d} \]
Substituting the provided values for the terms:
\[ \frac{\Delta P}{P} \times 100 = 2 + 6 + 3 + 2 = 13\% \]
The percentage change in \( P \) is 13%.
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Mass = \( (28 \pm 0.01) \, \text{g} \), Volume = \( (5 \pm 0.1) \, \text{cm}^3 \). What is the percentage error in density?
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)