Use the formula for propagation of errors to find the percentage error in P. The percentage error in xn is n times the percentage error in x. The percentage error in √x is half the percentage error in x.
The percentage change in \( P \) is given by: \[ \frac{\Delta P}{P} \times 100 = 2 \frac{\Delta a}{a} + 3 \frac{\Delta b}{b} + \frac{\Delta c}{c} + \frac{1}{2} \frac{\Delta d}{d} \]
Substituting the provided values for the terms:
\[ \frac{\Delta P}{P} \times 100 = 2 + 6 + 3 + 2 = 13\% \]
The percentage change in \( P \) is 13%.
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
| A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
| B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
| C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
| D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: