Step 1: Analyze the function
\[ f(x) = |x - 1| - x \] Break into cases: Case 1: \(x \leq 1\) \[ f(x) = (1 - x) - x = 1 - 2x \] Case 2: \(x>1\) \[ f(x) = (x - 1) - x = -1 \] So the function is: \[ f(x) = \begin{cases} 1 - 2x & x \leq 1
-1 & x>1 \end{cases} \]
Step 2: Area bounded by graph, x-axis, and y-axis
We consider only \(x \in [0,1]\), where the graph is \(f(x) = 1 - 2x\) This is a line from (0,1) to (0.5,0). So triangle between (0,0), (0,1), and (0.5,0) \[ \text{Area} = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} \cdot 0.5 \cdot 1 = \boxed{\frac{1}{4}} \]
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
When $10^{100}$ is divided by 7, the remainder is ?