Mass of nitrogen, m = 2.0 × 10-2 kg=20 g
in temperature, ΔT = 45°C
Molecular mass of N2, M = 28
Universal gas constant, R = 8.3 J mol-1 k-1
Number of moles, \(n=\frac{m}{M}\)
\(=\frac{2.0×10^{-2}×10^3}{28}=0.714\)
Molar specific heat at constant pressure for nitrogen, \(c_p=\frac{7}{2}\,R\)
\(=\frac{7}{2}×8.3\)
=29.05 J mol-1 K-1
The total amount of heat to be supplied is given by the relation:
\(ΔQ = C_p^n ΔT\)
\(= 0.714 × 29.05 × 45\)
\( = 933.38 \,J\)
Therefore, the amount of heat to be supplied is 933.38 J.
Match List-I with List-II: List-I List-II
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be: