Given:
The discharge \( Q \) for a V-notch weir is given by:
\( Q = \frac{8}{15} C_d \sqrt{2g} \tan\left(\frac{\theta}{2}\right) H^{5/2} \)
For a 90° V-notch: \( \tan\left( \frac{90^\circ}{2} \right) = \tan(45^\circ) = 1 \), so:
\( Q = \frac{8}{15} C_d \sqrt{2g} H^{5/2} \)
\( \sqrt{2 \times 9.81} = \sqrt{19.62} = 4.429 \, \text{m}^{0.5}/\text{s} \)
\( (0.49)^{5/2} = 0.49^2 \times \sqrt{0.49} = 0.2401 \times 0.7 = 0.16807 \)
\( Q = \frac{8}{15} \times 0.6 \times 4.429 \times 0.16807 \)
\( Q = 0.5333 \times 0.6 \times 4.429 \times 0.16807 \)
\( Q = 0.32 \times 4.429 \times 0.16807 = 1.41728 \times 0.16807 = 0.238 \, \text{m}^3/\text{s} \)
\( \boxed{0.24 \, \text{m}^3/\text{s}} \)