\( \vec{a}, \vec{b}, \vec{c} \) are three vectors such that \(|\vec{a}| = 3\), \(|\vec{b}| = 2\sqrt{2}\), \(|\vec{c}| = 5\), and \( \vec{c} \) is perpendicular to the plane of \( \vec{a} \) and \( \vec{b} \).
If the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \), then
\[ |\vec{a} + \vec{b} + \vec{c}| = \ ? \]
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.