We know that:
\[
\cos(180^\circ - 75^\circ) = -\cos 75^\circ
\]
Using the formula for \( \cos(A + B) \), where \( A = 45^\circ \) and \( B = 30^\circ \):
\[
\cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ
\]
Substitute the known values of \( \cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}} \), \( \cos 30^\circ = \frac{\sqrt{3}}{2} \), and \( \sin 30^\circ = \frac{1}{2} \):
\[
\cos(75^\circ) = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}
\]
Thus:
\[
\cos 105^\circ = -\cos 75^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}
\]