Using properties of determinants,prove that:
\(\begin{vmatrix} x & x^2 & 1+px^3\\ y & y^2 & 1+py^3\\z&z^2&1+pz^3 \end{vmatrix}\)\(=(1+pxyz)(x-y)(y-z)(z-x)\)
\(Δ=\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ y & y^2 & 1+py^3\\z&z^2&1+pz^3 \end{vmatrix}\)
Applying \(R_2\rightarrow R_2-R_1\) and \(R_3\rightarrow R_3-R_1\),we have
=\(\begin{vmatrix} x & x^2 & 1+px^3\\ y-x & y^2-x^2 & p(y^3-x^3)\\z-x&z^2-x^2&p(z^3-x^3)\end{vmatrix}\)
\(=(y-x)(z-x)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1 & y+x & p(y^2+x^2+xy)\\1&z+x&p(z^2+x^2+xz)\end{vmatrix}\)
Applying \(R_3\rightarrow R_3-R_2\),we have:
\( Δ=(y-x)(z-x)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1& y+x & p(y^2+x^2+xy)\\0&z-y&p(z-y)(x+y+z)\end{vmatrix}\)
\(=(y-x)(z-x)(z-y)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1& y+x & p(y^2+x^2+xy)\\0&1&p(x+y+z)\end{vmatrix}\)
Expanding along \(R_3\),we have:
\(Δ=(x-y)(y-z)(z-x)[(-1)(p)(xy^2+x^3+x^2y)+1+px^3+p(x+y+z)(xy)]\)
\(=(x-y)(y-z)(z-x)[-pxy^2-px^3-px^2y+1+px^3+px^2y+pxy^2+pxyz]\)
\(=(x-y)(y-z)(z-x)(1+pxyz)\)
Hence,the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: