Using properties of determinants,prove that:
\(\begin{vmatrix} x & x^2 & 1+px^3\\ y & y^2 & 1+py^3\\z&z^2&1+pz^3 \end{vmatrix}\)\(=(1+pxyz)(x-y)(y-z)(z-x)\)
\(Δ=\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ y & y^2 & 1+py^3\\z&z^2&1+pz^3 \end{vmatrix}\)
Applying \(R_2\rightarrow R_2-R_1\) and \(R_3\rightarrow R_3-R_1\),we have
=\(\begin{vmatrix} x & x^2 & 1+px^3\\ y-x & y^2-x^2 & p(y^3-x^3)\\z-x&z^2-x^2&p(z^3-x^3)\end{vmatrix}\)
\(=(y-x)(z-x)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1 & y+x & p(y^2+x^2+xy)\\1&z+x&p(z^2+x^2+xz)\end{vmatrix}\)
Applying \(R_3\rightarrow R_3-R_2\),we have:
\( Δ=(y-x)(z-x)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1& y+x & p(y^2+x^2+xy)\\0&z-y&p(z-y)(x+y+z)\end{vmatrix}\)
\(=(y-x)(z-x)(z-y)\)\(\begin{vmatrix} x & x^2 & 1+px^3\\ 1& y+x & p(y^2+x^2+xy)\\0&1&p(x+y+z)\end{vmatrix}\)
Expanding along \(R_3\),we have:
\(Δ=(x-y)(y-z)(z-x)[(-1)(p)(xy^2+x^3+x^2y)+1+px^3+p(x+y+z)(xy)]\)
\(=(x-y)(y-z)(z-x)[-pxy^2-px^3-px^2y+1+px^3+px^2y+pxy^2+pxyz]\)
\(=(x-y)(y-z)(z-x)(1+pxyz)\)
Hence,the given result is proved.
(a) (i) Import substitution policy, if not applied carefully, can be a double-edged sword for any economy. Do you agree with the given statement? Justify your answer with valid arguments.
(ii) State how multilateral trade is different from bilateral trade.
OR
(b)
(i) Discuss briefly, causes and consequences of the tax reforms initiated during economic reforms in India.
(ii) Give one example each of a Navratna and a Maharatna company in the public sector in India.
Comparative Financial Data as on 31st March, 2024 and 2023
| Particulars | 31.03.2024 (₹) | 31.03.2023 (₹) |
|---|---|---|
| Surplus (P&L) | 17,00,000 | 8,00,000 |
| Patents | -- | 50,000 |
| Sundry Debtors | 5,80,000 | 4,20,000 |
| Sundry Creditors | 1,40,000 | 60,000 |
| Cash and Cash Equivalents | 2,00,000 | 90,000 |