>
Exams
>
Mathematics
>
Determinants
>
using properties of determinants prove that vmatri
Question:
Using properties of determinants,prove that:
\(\begin{vmatrix}1& 1+p& 1+p+q\\ 2& 3+2p& 4+3p+2q\\ 3& 6+3p& 10+6p+3q\end{vmatrix}=1\)
CBSE CLASS XII
Updated On:
Sep 21, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
\(\triangle=\begin{vmatrix}1& 1+p& 1+p+q\\ 2& 3+2p& 4+3p+2q\\ 3& 6+3p& 10+6p+3q\end{vmatrix}\)
Applying
\(R_2→R_2-2R_1\)
and R3→R3-3R1
\(R_3→R_3-3R_1\)
,we have
\(\triangle=\begin{vmatrix}1& 1+p& 1+p+q\\ 0& 1& 2+p\\ 0& 3& 7+3p\end{vmatrix}\)
Applying
\(R_3→R_3-3R_2\)
we have:
\(Δ=\begin{vmatrix}1& 1+p& 1+p+q\\ 0& 1& 2+p\\ 0& 0& 1\end{vmatrix}\)
Expanding along
\(C_1\)
,we have:
\(Δ=1\begin{vmatrix}1& 2+p\\ 0& 1\end{vmatrix}=1(1-0)=1\)
Hence,the given result is proved.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Determinants
If \[ f(x) = \begin{vmatrix} x^3 & 2x^2 + 1 & 1 + 3x \\ 3x^2 + 2 & 2x & x^3 + 6 \\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} \] for all \( x \in \mathbb{R} \), then \( 2f(0) + f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let \( A \) be a \( 3 \times 3 \) matrix and \( \det(A) = 2 \). If
\(n = \det(\text{adj}(\text{adj}(\ldots(\text{adj}(A))\ldots)))\)
with adjoint applied 2024 times, then the remainder when \( n \) is divided by 9 is equal to
\(\_\_\_\_\_.\)
JEE Main - 2024
Mathematics
Determinants
View Solution
If \( \sin\left(\frac{y}{x}\right) = \log_e |x| + \frac{\alpha}{2} \) is the solution of the differential equation \[x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x\]and \( y(1) = \frac{\pi}{3} \), then \( \alpha^2 \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
If \[ f(x) = \begin{vmatrix} 2 \cos^4 x & 2 \sin^4 x & 3 + \sin^2 2x \\ 3 + 2 \cos^4 x & 2 \sin^4 x & \sin^2 2x \\ 2 \cos^4 x & 3 + 2 \sin^4 x & \sin^2 2x \end{vmatrix} \] then \( \frac{1}{5} f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let $A =\left[ a _{i j}\right], a _{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$ .
The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is _____.
JEE Main - 2023
Mathematics
Determinants
View Solution
View More Questions
Questions Asked in CBSE CLASS XII exam
Find the inverse of each of the matrices, if it exists.
\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
For what values of x,
\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)
\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)
=O?
CBSE CLASS XII - 2023
Matrices
View Solution
Find the inverse of each of the matrices,if it exists
\(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
What is the Planning Process?
CBSE CLASS XII - 2023
Planning process steps
View Solution
Find the inverse of each of the matrices,if it exists.
\(\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
View More Questions
Notes on Determinants
Determinants Mathematics
Determinant of a Matrix Mathematics
Determinant Mathematics
Consistent Systems of Linear Equations Mathematics
NCERT Solutions for Class 12 Maths Chapter 4 Determinants
Determinants And Matrices Mathematics