Using properties of determinants,prove that:
\(\begin{vmatrix} 3a& -a+b & -a+c\\ -b+a & 3b & -b+c \\-c+a&-c+b&3c\end{vmatrix}\)\(=3(a+b+c)(ab+bc+ca)\)
\(Δ=\)\(\begin{vmatrix} 3a& -a+b & -a+c\\ -b+a & 3b & -b+c \\-c+a&-c+b&3c\end{vmatrix}\)
Applying \(C_1\rightarrow C_1+C_2+C_3\),we have
\(=\begin{vmatrix} a+b+c& -a+b & -a+c\\ a+b+c & 3b & -b+c \\a+b+c&-c+b&3c\end{vmatrix}\)
\(=(a+b+c)\)\(\begin{vmatrix} 1& -a+b & -a+c\\ 1 & 3b & -b+c \\1&-c+b&3c\end{vmatrix}\)
Applying \(R_2\rightarrow R_2-R_1\), and\( R_3\rightarrow R_3-R_1\)we have:
\( Δ=(a+b+c)\)\(\begin{vmatrix} 1& -a+b & -a+c\\ 0 & 2b+a & a-b \\0&a-c&2c+a\end{vmatrix}\)
Expanding along \(C_1,\)we have:
\(Δ=(a+b+c)[(2b+a)(2c+a)-(a-b)(a-c)]\)
\(=(a+b+c)[4bc+2ab+2ac+a^2-a^2+ac+ba-bc]\)
\(=(a+b+c)(3ab+3bc+3ac)\)
\(=3(a+b+c)(ab+bc+ca)\)
Hence,the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: