Using properties of determinants,prove that:
\(\begin{vmatrix} 3a& -a+b & -a+c\\ -b+a & 3b & -b+c \\-c+a&-c+b&3c\end{vmatrix}\)\(=3(a+b+c)(ab+bc+ca)\)
\(Δ=\)\(\begin{vmatrix} 3a& -a+b & -a+c\\ -b+a & 3b & -b+c \\-c+a&-c+b&3c\end{vmatrix}\)
Applying \(C_1\rightarrow C_1+C_2+C_3\),we have
\(=\begin{vmatrix} a+b+c& -a+b & -a+c\\ a+b+c & 3b & -b+c \\a+b+c&-c+b&3c\end{vmatrix}\)
\(=(a+b+c)\)\(\begin{vmatrix} 1& -a+b & -a+c\\ 1 & 3b & -b+c \\1&-c+b&3c\end{vmatrix}\)
Applying \(R_2\rightarrow R_2-R_1\), and\( R_3\rightarrow R_3-R_1\)we have:
\( Δ=(a+b+c)\)\(\begin{vmatrix} 1& -a+b & -a+c\\ 0 & 2b+a & a-b \\0&a-c&2c+a\end{vmatrix}\)
Expanding along \(C_1,\)we have:
\(Δ=(a+b+c)[(2b+a)(2c+a)-(a-b)(a-c)]\)
\(=(a+b+c)[4bc+2ab+2ac+a^2-a^2+ac+ba-bc]\)
\(=(a+b+c)(3ab+3bc+3ac)\)
\(=3(a+b+c)(ab+bc+ca)\)
Hence,the given result is proved.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
