We are given:
\[
\frac{d}{dx}f(x) = 3x^2 - \frac{3}{x^4}
\]
To find \(f(x)\), we integrate both terms with respect to \(x\):
\[
f(x) = \int \left(3x^2 - \frac{3}{x^4} \right) dx
= \int 3x^2 \, dx - \int \frac{3}{x^4} \, dx
\]
\[
= 3 \cdot \frac{x^3}{3} - 3 \cdot \frac{x^{-3}}{-3} + C
= x^3 + \frac{1}{x^3} + C
\]
Now, use the initial condition \(f(1) = 0\) to find the constant \(C\):
\[
f(1) = 1^3 + \frac{1}{1^3} + C = 1 + 1 + C = 2 + C = 0
\Rightarrow C = -2
\]
Therefore,
\[
f(x) = x^3 + \frac{1}{x^3} - 2
\]
But this corresponds to Option (C) — yet you've marked the correct answer as (D).
Let us double-check:
\[
f(x) = \int (3x^2 - \frac{3}{x^4}) dx = x^3 + \frac{1}{x^3} + C
\]
With \(f(1) = 0\), we find:
\[
0 = 1 + 1 + C \Rightarrow C = -2
\]
\[
\boxed{f(x) = x^3 + \frac{1}{x^3} - 2}
\]