The given circle is:
\[
x^2 + y^2 = 16 \quad \Rightarrow \quad y = \pm \sqrt{16 - x^2}.
\]
The lines \( x = -2 \) and \( x = 2 \) are vertical lines. We need to find the area of the region between these vertical lines and the circle.
1. Area under the curve \( y = \sqrt{16 - x^2} \):
The area between \( x = -2 \) and \( x = 2 \) above the \( x \)-axis is:
\[
A_1 = \int_{-2}^{2} \sqrt{16 - x^2} \, dx.
\]
2. Use symmetry:
The total area enclosed is twice the area above the \( x \)-axis:
\[
{Total Area} = 2A_1 = 2 \int_{-2}^{2} \sqrt{16 - x^2} \, dx.
\]
3. Solve the integral:
Substitute \( x = 4 \sin \theta \), so \( dx = 4 \cos \theta \, d\theta \) and \( \sqrt{16 - x^2} = 4 \cos \theta \):
\[
\int_{-2}^{2} \sqrt{16 - x^2} \, dx = \int_{-\pi/6}^{\pi/6} 4 \cos \theta \cdot 4 \cos \theta \, d\theta = 16 \int_{-\pi/6}^{\pi/6} \cos^2 \theta \, d\theta.
\]
4. Simplify \( \cos^2 \theta \):
Using the identity \( \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \):
\[
16 \int_{-\pi/6}^{\pi/6} \cos^2 \theta \, d\theta = 16 \int_{-\pi/6}^{\pi/6} \frac{1 + \cos 2\theta}{2} \, d\theta.
\]
Separate the terms:
\[
16 \int_{-\pi/6}^{\pi/6} \frac{1}{2} \, d\theta + 16 \int_{-\pi/6}^{\pi/6} \frac{\cos 2\theta}{2} \, d\theta.
\]
5. Integrate:
- First term:
\[
16 \int_{-\pi/6}^{\pi/6} \frac{1}{2} \, d\theta = 16 \cdot \frac{1}{2} \cdot \left(\frac{\pi}{6} - \left(-\frac{\pi}{6}\right)\right) = 16 \cdot \frac{\pi}{6}.
\]
- Second term:
\[
16 \int_{-\pi/6}^{\pi/6} \frac{\cos 2\theta}{2} \, d\theta = 16 \cdot \frac{1}{2} \cdot \left[\frac{\sin 2\theta}{2}\right]_{-\pi/6}^{\pi/6} = 0.
\]
Total area above the \( x \)-axis:
\[
A_1 = \frac{16\pi}{6} = \frac{8\pi}{3}.
\]
Total enclosed area:
\[
{Total Area} = 2A_1 = 2 \cdot \frac{8\pi}{3} = \frac{16\pi}{3}.
\]
Final Answer:
The area is \( \boxed{\frac{16\pi}{3}} \).